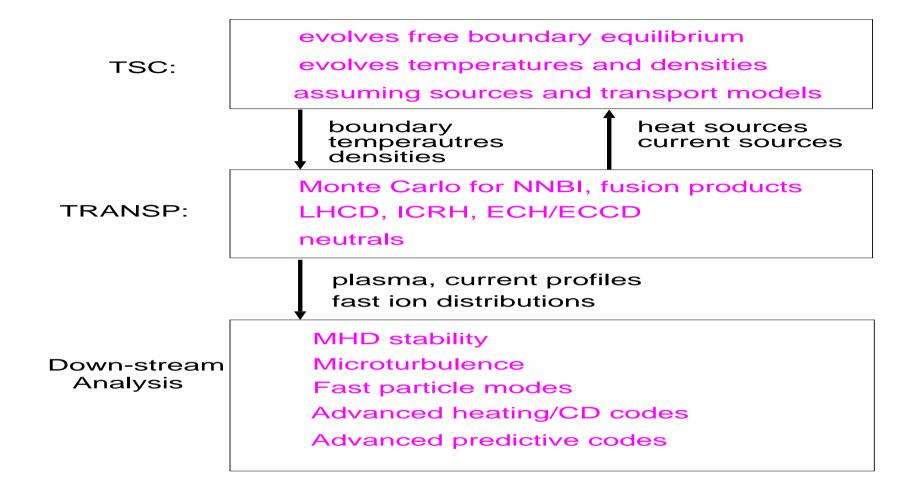
Time-Dependent Integrated Modeling of Burning Plasmas

R. Budny, R. Andre, and C. Kessel (PPPL)

IAEA meeting W60 for Burning Plasma Physics, Tarragona, Spain, July 4-5, 2005


- Need better understanding of burning plasmas to increase the chances of practical fusion power
- Time-dependent integrated modeling will help meet this goal
 - 1. Check the ITER design (ex, P_{aux} sufficient? rotation sufficient? ash removal sufficient? will the diagnostics work?)
 - 2. Provide quality data for theoretical studies (ex, TAE)
 - 3. Will need to certify each plasma before it is tried

- ITER plasmas generated using a prototype of PTRANSP
- Examples of uses of the modeling
 - 1. distributions of the fast alpha and NNBI ions
 - 2. estimates of toroidal rotation and E_r profiles
 - 3. gyrokinetic simulations of energy, momentum, and particle flows
 - 4. estimates of alpha ash profile
- Introduction to PTRANSP

Prototype Integrated Modeling using the TSC and TRANSP codes

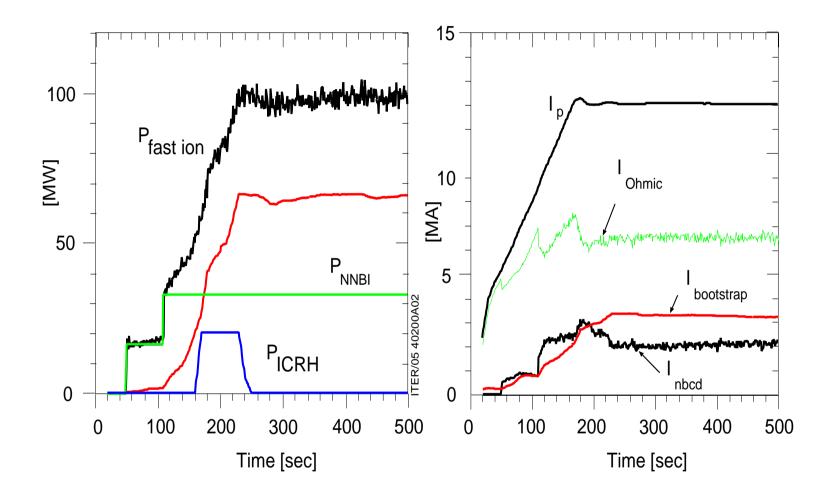
ITER Plasmas studied

- Steady-State plasma: low current, fully non-inductive
- Day-one hybrid plasma: $q(0) \simeq 1.0-2.0$, low β_n (2.1)
- Sawtoothing ELMy H-mode

	$I_{m p}$	I_{boot}	I_{nnbi}	$\overline{I_{Oh}/I_p}$		f_{GW}	$T_e(0)$	P_{DT}	$\boldsymbol{\beta_{\alpha}}(0)$
units	MA	MA	MA		$10^{20}/m^3$		keV	MW	per cent
Steady-State	9	4.3	4.3	0.0	0.6	0.63	33	305	1.3
Hybrid	12	2.8	2.4	0.50	0.8	0.64	24	333	1.0
ELMy	15	2.7	1.1	0.70	1.1	0.80	22	403	0.6

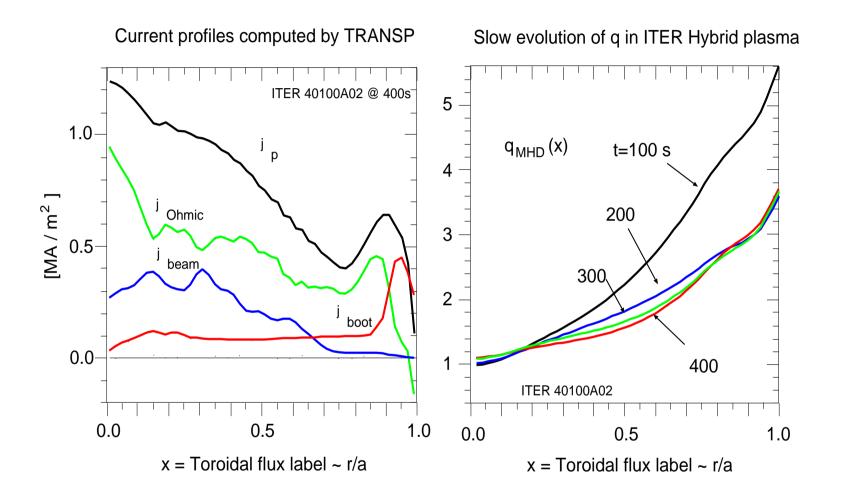
Examples of Findings

- ullet High pedestal temperatures appears required by GLF23 (in TSC) to achieve P $_{DT}\simeq$ 400MW with the planned ITER auxiliary heating
- Good NNBI penetration and current drive
- ullet Modest toroidal rotation from NNBI torques if $\chi_{mom}pprox\chi_i$
- Intense TAE activity predicted

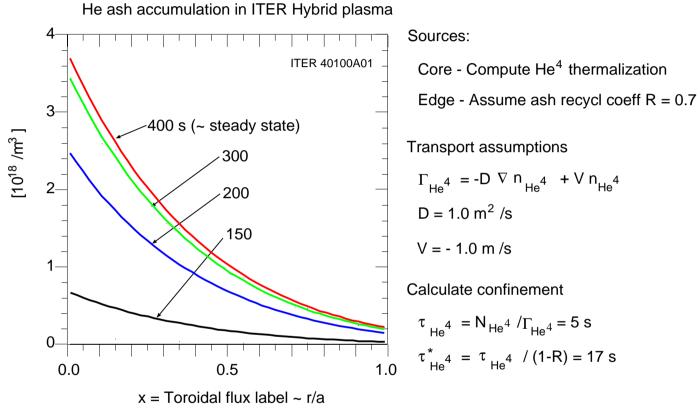


Construction of the Hybrid plasma

- Use GLF23 model to predict temperatures
- ullet High pedestal temperatures to achieve ${\sf P}_{DT} \simeq$ 400 MW
- \bullet Reduced I_p (12 MA) to decrease inductive-current fraction
- Moderate density for good NNBI penetration
- Suffi cient current drive to keep q(0) above unity

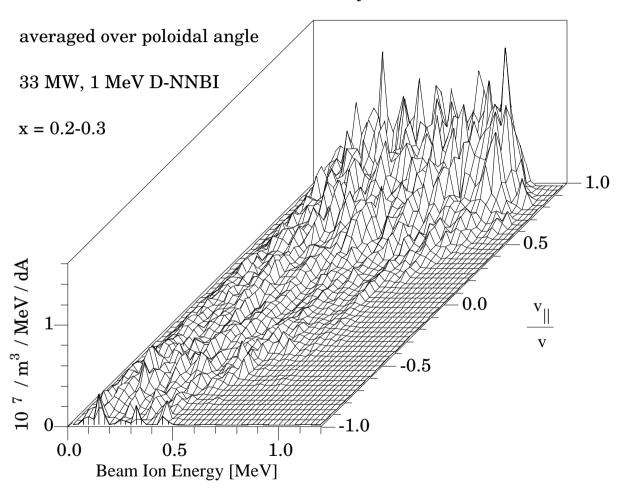


Heating powers and plasma currents in the Hybrid plasma

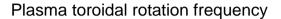


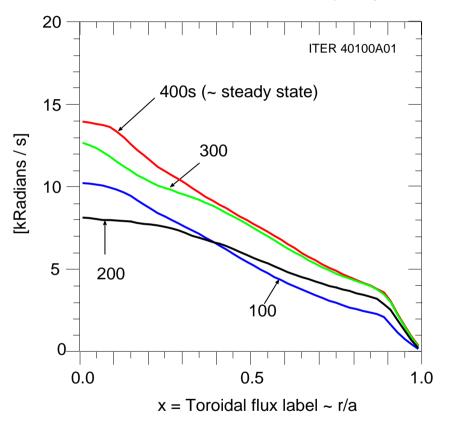
Sustained $q_{MHD} > 1$ with evolving reversal in Hybrid plasma

Integrated modeling needed for ash accumulation



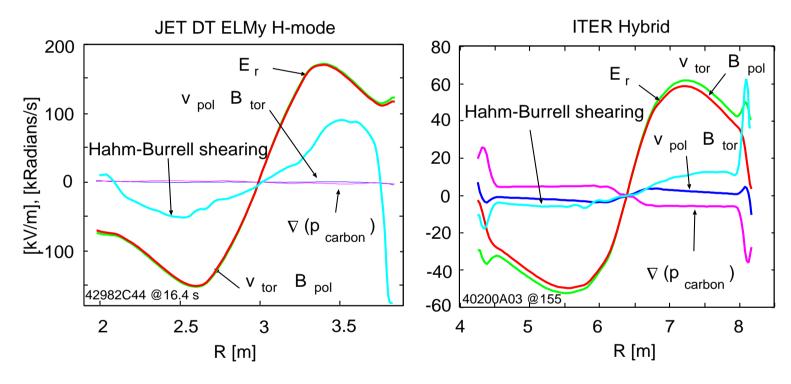
ullet Need to get Γ_{He^4} from nonlinear gyrokinetic simulations


TRANSP computes distributions of fast ions


Beam ion distribution in ITER Hybrid shot 40000B09

Estimate modest toroidal rotation in the Hybrid plasma

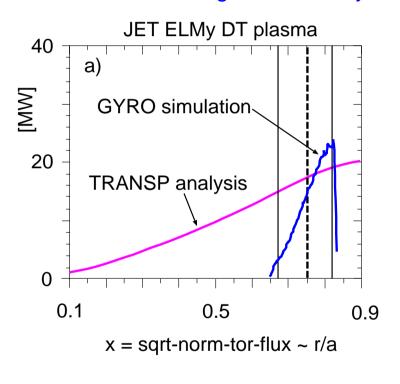
Assume:

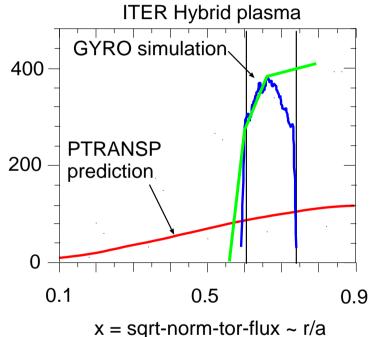

$$\chi_{mom}^{}=\chi_{i}^{}$$

$$P_{NNBI} = 33 MW$$

Torques from NNBI

Compare E_r in JET DT ELMy and ITER Hybrid plasma


- ullet E_r predicted for ITER Hybrid less than JET ELMy by factor of 3
- ullet E_r dominated by v_{tor} term



Nonlinear GYRO simulations predict energy flow rates

- Agreement for the JET DT ELMy H-mode (with $\nabla(E_r)$ reduced 10%)
- Factor of 3 too high for ITER Hybrid

Discussion of gyrokinetic simulations

- Want to close the loop: GYRO \Rightarrow GLF23 \Rightarrow TSC \Rightarrow TRANSP \Rightarrow GYRO
- EPS 2005 paper on GYRO nonlinear simulations of JET and DIII-D ELMy plasmas
 - 1. Energy, momentum, and electron species flows depend sensitively on $abla(T_i)$ and $abla(E_r)$
 - 2. Slight changes get approximate agreement for energy flow in 3 out of 4 plasmas studied
- ullet Also find strong sensitivity to $oldsymbol{
 abla}(T_i)$ in ITER
- ullet For ITER Hybrid get Γ_E higher than TRANSP result by imes 3 for $r/a \simeq 0.7 0.8$
- ullet Find turbulence suppressed for $r/a \leq 0.6$
- ullet Plan to explore sensitivity to $\gamma_{E \times B}$
- Plan GYRO runs with more than 2 ion species to explore D, T, ash, and impurity transport

Plans for Integrated Modeling using PTRANSP

- New PPPL Lehigh GA LNL Collaboration
- Planned near-term upgrades to TRANSP
 - 1. Ability to stop, steer, and restart
 - 2. Free boundary adjusted by varying coil currents
 - 3. Improved temperature predictive capabilities
 - 4. Improved Verifi cation and Validation
- Planned long-term upgrades to TRANSP
 - 1. Scrape-off model
 - 2. density prediction

Summary

- The TSC-TRANSP codes have been used to prototype time-dependent integrated modeling of burning plasmas
 - 1. Steady-State, Hybrid, and ELMy H-mode ITER plasmas
- ullet Moderate toroidal rotation estimated from NNBI if $\chi_\phi \simeq \chi_i$
- TAE activity is predicted for ITER
- High pedestal temperatures required by the GLF model in TSC
- ash accumulation modeled for various transport assumptions
- Upgrade (PTRANSP) in progress
- Nonlinear GYRO runs simulated energy, momentum, and electron flow in ITER

Work needed

- Continued PTRANSP collaboration important for integration of more physics
- Submit more ITER plasmas to ITPA profi le database
- Gyrokinetic studies
 - 1. verifi cation and validation
 - 2. assess need for rotation
 - 3. predict particle transport

